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Summary

Zinc (Zn) still represents an important health problem in developing countries, caused mainly by inadequate
dietary intake. A large consumption of cereal-based foods with small concentrations and low bioavailability of Zn
is the major reason behind this problem. Modern cultivars of cereals have inherently very small concentrations of
Zn and cannot meet the human need for Zn. Today, up to 50% of wheat-cultivated soil globally is considered poor
in bioavailable Zn. Agricultural strategies that are used to improve the nutritional value of crop plants are known
as biofortification strategies. They include genetic biofortification, which is based on classical plant breeding and
genetic engineering for larger nutrient concentrations, and greater agronomic biofortification, which is based on
optimized fertilizer applications. This review focuses on agronomic biofortification with Zn, which has proved
to be very effective for wheat and also other cereal crops including rice. Molecular and genetic research into
Zn uptake, transport and grain deposition in cereals are critically important for identifying ‘bottlenecks’ in the
biofortification of food crops with Zn. Transgenic plants with large Zn concentrations in seeds are often tested
under controlled laboratory or glasshouse conditions with sufficient available Zn in the growth medium for the
entire growth period. However, they might not always show the same performance under ‘real-world’ conditions
with limited chemical availability of Zn and various stress factors such as drought. What purpose can an upgraded
transport and storage system serve if the amount of goods to be transported and stored is limited anyway? Given
the fact that the Zn concentrations required to achieve a measurable impact on human health are well above those
required to avoid any loss of yield from Zn deficiency, providing crop plants with sufficient Zn through the soil
and foliar fertilizer strategy under field conditions is critically important for biofortification efforts.

Highlights

• Zinc malnutrition is a major global health issue associated with cereal-based diets.
• Agronomic biofortification with Zn aims to provide edible parts of crop plants with sufficient Zn.
• Biofortification with Zn fertilizers, particularly foliar applications, works well for wheat and other cereals.
• Agronomic biofortification with Zn provides a practical and cost-effective option to tackle the global Zn

malnutrition problem.

Why wheat grain needs to be enriched with Zn
for better human nutrition

There are several critical facts that highlight the importance
of increasing the Zn concentration in wheat grain for human
consumption. These are discussed below, starting with the human
aspect and continuing with the relevant plant and soil factors.
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Roles of Zn in human physiology and health

Zinc has diverse physiological functions in biological systems. It
interacts with a large number of enzymes and other proteins in
the body and performs critical structural, functional and regulatory
roles. It is estimated that about 10% of all the proteins in the human
body, corresponding to nearly 3000 proteins, are Zn-dependent
(Andreini et al., 2006; Krezel & Maret, 2016). Therefore, clinical
or subclinical Zn deficiency is associated with a wide array of
physiological issues, including growth retardation, impaired brain
development, increased susceptibility to infectious diseases such as
pneumonia and diarrhoea, reduced physical performance and work
productivity, and poor birth outcomes in pregnant women (Black
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Figure 1 Concentration of Zn in edible portion of different foods collected
in Istanbul (I. Cakmak, unpublished results).

et al., 2008; Gibson, 2012; Krebs et al., 2014; Terrin et al., 2015).
About a third of the world’s population is estimated to be at risk
of Zn deficiency, which is especially prevalent in children under
5 years of age because of their relatively large demand for Zn to
support growth and development (Wessells & Brown, 2012). Every
year, about half a million children under 5 years of age die from
causes related to Zn deficiency (Black et al., 2008; Krebs et al.,
2014). Deficiencies of Zn and other micronutrients in developing
countries are also reported to cause great economic losses and have
a considerable effect on the gross national product by decreasing
productivity and increasing the health care costs (Darton-Hill et al.,
2005; Stein, 2014).

Contribution of cereals to daily calorie and zinc intake

Zinc deficiency is often caused by low dietary intake that is
associated with a large consumption of cereal-based foods. In
comparison to animal-based foods, cereal-based foods have very
small Zn concentrations (Figure 1). The majority of people in
developing countries, however, especially in rural regions, rely
on cereal-based foods as the major source of energy and minerals
because of widespread poverty, high food prices and cultural
preferences (Bouis, 2003; Bouis & Welch, 2010). Therefore, the
contribution of animal-based foods to the daily Zn intake is much
less in developing countries than in high-income countries (Wes-
sells & Brown, 2012; Figure 2). At present, three cereals, wheat,
rice and maize, provide up to 60% of the daily energy intake of
human populations (Tilman et al., 2002), and bread wheat alone
is the staple food for 35% of the world’s population (Poursarebani
et al., 2014). These rates are even higher for developing countries.
For example, in several Asian countries with a high incidence of
Zn and Fe deficiencies, rice and wheat alone provide over 70% of
the daily calorie intake in rural areas (Cakmak, 2008a; Timmer,
2014). Wheat and rice are categorized as very poor sources of Zn
and Fe, in terms of both content and bioavailability (see below).

In general, concentrations of Zn in grain in wheat-cultivated
regions range between 20 and 35 mg kg−1, with an average value
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Figure 2 Regional data on the contribution of animal-based foods (above)
and cereals (below) to daily Zn intake (redrawn from Wessells & Brown,
2012).

of around 28–30 mg kg−1 (Rengel et al., 1999; Graham et al., 2007;
Fardet et al., 2008; Cakmak et al., 2010a). The Zn in grain can be far
below the 20 mg kg−1 concentration, however, when wheat is grown
on Zn-deficient or Zn-poor soil. For example, in Zn-deficient soil of
Australia and Turkey, Zn concentrations of grain are < 10 mg kg−1,
whereas in Zn-sufficient or Zn-fertilized soil, grain concentrations
of Zn are over 20 mg kg−1 (Graham et al., 1992; Cakmak et al.,
1999a, 2010a). These Zn concentrations are too small to meet the
daily required intake of Zn. There is clearly a large gap between the
actual average Zn concentration of grain and the target range for
human health, which is 40–50 mg kg−1 (Graham et al., 2007; Zhao
et al., 2009; Cakmak et al., 2010a).

Dilution of Zn in wheat grain because of increases in yield

There have been marked increases in the grain yield of major
cereal crops over the past 100 years, especially during the Green
Revolution, which began most markedly in the 1960s (Grassini
et al., 2013). In the past, plant breeders were almost exclusively
interested in the development of new cereal varieties with larger
grain yield. With breeding efforts and improved soil and crop
management practices, the average yields of major crops has
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increased more than twofold during the past 50–60 years (Tilman
et al., 2002; Davis, 2009; Curtis & Halford, 2014). These large
increases in yield, however, have caused considerable decreases
in the concentrations of essential nutrients such as Zn because of
the so-called ‘dilution effect’ (Garvin et al., 2006; Fan et al., 2008;
Davis, 2009; Shewry et al., 2016). Cakmak et al. (1999b, 2010b)
reported that primitive and wild relatives of cultivated wheat contain
two- or threefold more Zn than modern wheat cultivars, which
can produce large grain yields. Smaller grain Zn concentrations
in high-yielding wheat cultivars than in older varieties were also
reported by Fan et al. (2008) and Zhao et al. (2009).

Adverse soil conditions that affect grain Zn

Up to 50% of wheat-cultivated soil in the world is considered poor
in plant-available Zn. Under such conditions, wheat varieties can-
not realize their full potential in Zn absorption and accumulation,
and therefore, grain Zn concentrations are reduced further (Cak-
mak, 2008a). The availability of Zn to plant roots is very low in
alkaline soils, which cover at least 30% of the arable land globally
(Chen & Barak, 1982; Cakmak, 2002; Alloway, 2009). The major
soil types that are frequently associated with Zn deficiency are cal-
careous soil (Calcisols), sandy soil (Arenosols), weathered tropical
soil (Ferralsols), saline soil, waterlogged soil (Gleysols) and heavy
cracking clay soil (Vertisols) (Alloway, 2008). The potentially
bioavailable Zn in the soil comprises the soluble, exchangeable and
organically-bound pools, and plant roots take up Zn mainly from
the soil solution. In the soil solution, Zn concentration decreases
by 30-fold for each unit increase in soil pH between 5 and 7
(Marschner, 1993). When soil pH is above 8, Zn is bound to soil par-
ticles (such as Fe oxides and calcites) more strongly, causing very
poor availability of Zn to plant roots. Like high soil pH, small soil
moisture and organic matter contents limit the amount of soluble Zn
considerably in the root environment. Small moisture and organic
matter contents are common features of soil under wheat cultiva-
tion (Graham et al., 1992; Marschner, 1993; Alloway, 2009). Zinc
in the soil reaches plants roots through diffusion, and this process is
severely impaired when soil moisture and organic matter decline
(Marschner, 1993; Rengel, 2015). Consequently, the capacity of
roots to take up Zn is hampered, leading to low Zn accumulation in
plants. This causes losses of yield, depending on the severity of Zn
deficiency. Under such soil chemical conditions, Zn fertilizer appli-
cation to soil is of great importance to ensure a sufficient uptake
of Zn by roots (Cakmak et al., 1996; Rengel, 2015). Wheat is most
commonly cultivated in semi-arid regions where the topsoil often
remains dry during the grain-filling stage. It is not surprising that
Zn deficiency in wheat often occurs when soil moisture is limited
because of the low and irregular precipitation reported for Australia
(Graham et al., 1992), Turkey (Ekiz et al., 1998; Bagci et al., 2007)
and several Asian countries (Rafique et al., 2006; Karim & Rahman,
2015). Therefore, maintaining a sufficiently large concentration of
plant-available Zn in the soil of semi-arid regions is particularly
important to achieve desirable Zn concentrations in grain for human
nutrition. The geographical distribution of Zn deficiency in human

Figure 3 Localization of Zn in a wheat grain, visualized with dithizone as
a Zn-sensing dye that develops a red complex with Zn. The intensity of the
red colour is associated with the Zn concentration (see Ozturk et al., 2006).

populations overlaps with the distribution of Zn-deficient soil and
low socioeconomic status of the population.

Localization and bioavailability of Zn in wheat grain and the
effects of milling

Zinc is mainly localized and concentrated in the aleurone and
embryo parts of wheat grain. Figure 3 shows that the Zn concen-
tration of the endosperm (white flour) is very small. According
to Ozturk et al. (2006), whereas the endosperm contains around
10 mg Zn per kg, the embryo and aleurone layer may contain over
100 mg Zn kg−1. Wheat grain is often consumed after milling,
which removes the Zn-rich parts and leaves just the Zn-poor
endosperm behind. Depending on the extraction rate, typical white
wheat flour contains about 5–10 mg Zn per kg only (Peterson et al.,
1983; Cakmak et al., 2010b), and these concentrations cannot meet
the dietary requirement for Zn. The data on dietary Zn requirement
and the methods used to estimate them have continued to evolve
since the 1970s together with our understanding of Zn absorption
and bioavailability (Gibson et al., 2010). The recommended dietary
allowance (RDA) for Zn suggested by the International Zinc Nutri-
tion Consultative Group (IZiNCG) varies between 9 and 19 mg
per day for adults who consume an unrefined, cereal-based diet,
depending on gender and special conditions such as pregnancy and
lactation (Brown et al., 2004). Assuming that about 400 g of wheat
flour is eaten daily by the target individuals who live in the major
wheat-consuming countries and the average concentration of Zn in
flour is about 8 mg Zn per kg, the average daily intake of Zn will be
around 3.2 mg only. Without any intervention such as food fortifica-
tion, supplementation or dietary diversification, these people must
suffer from severe Zn deficiency and its consequences. For target
countries where the Zn concentrations in flour are very small, for-
tification of flour with Zn at concentrations of 15–30 mg Zn per kg
has been suggested as an intervention strategy (Brown et al., 2010).

© 2017 The Authors. European Journal of Soil Science published by John Wiley & Sons Ltd on behalf of British Society of Soil Science
European Journal of Soil Science, 69, 172–180



Agronomic zinc biofortification 175

In addition, wheat grain is rich in compounds that reduce the
bioavailability and limit the intestinal absorption of Zn such as
phytate and phenolic compounds. Published evidence is available
showing that a reduction in dietary phytate concentrations by
dephytinization is associated with greater bioavailability and intake
of Zn (Egli et al., 2004; Gibson et al., 2010). Phytate is, however,
localized mainly in the aleurone and embryo parts of wheat and
rice grains, and occurs in very small concentrations only (if
detectable at all) in the endosperm (Pomeranz, 1988; Lehrfeld &
Wu, 1991; Prom-u-Thai et al., 2008), which suggests that the small
concentrations of Zn in the endosperm are potentially bioavailable.
More research is required to investigate Zn bioavailability in the
white flour fraction of wheat.

Agronomic biofortification with zinc through fertilizer
application

Conventional and molecular plant breeding, genetic modification
(transgenic technologies) and agronomic interventions including
appropriate fertilizer applications are the major tools that are
used and investigated for the biofortification of food crops with
Zn. As described above, most of the cultivated soil, especially
that used for wheat and other cereals in the target countries, has
a diversity of chemical and physical problems that reduce the
plant-availability of Zn. Under such conditions of inadequate Zn
availability, newly developed genotypes biofortified with Zn by
breeding or genetic engineering might be unable to realize their
full potential and to accumulate the amount of Zn in their grains
that would achieve a marked biological effect in target populations
(Cakmak, 2008a). Although molecular and genetic studies for
investigating Zn uptake, transport and grain deposition phenomena
in cereals are critically important for understanding the physiology
of these processes and identifying the bottlenecks, transgenic
strategies for the biofortification of cereals with Zn are still in their
infancy. Although there are quite a few encouraging examples of
transgenic cereals developed for enhanced root uptake, transport
and grain accretion capacity for Fe or Zn or both in the recent
literature (Suzuki et al., 2008a,b; Borg et al., 2012; Gomez-Galera
et al., 2012; Masuda et al., 2013; Borrill et al., 2014; Trijatmiko
et al., 2016), genetically engineered plants are often tested under
controlled laboratory or glasshouse conditions only with sufficient
micronutrient availability. They might not always be able to show
the same performance under ‘real world’ conditions with limited
micronutrient availability and various other stress factors such as
water deficit, heat stress and disease pressure. What purpose can an
upgraded transport and storage system serve if the amount of goods
to be transported and stored is limited anyway?

Figure 4 shows that there are two major sources of Zn in the
grain: (i) Zn that is absorbed continuously by roots from soil and
translocated into grain and (ii) Zn that is deposited in vegetative
tissues (leaves and stems) and then remobilized to be translocated
into grain during the reproductive stage (Waters et al., 2009;
Kutman et al., 2012; Sperotto, 2013). The relative contributions of
these two sources to the accumulation of Zn in grain vary depending

Root uptake and grain accumulation of Zn during reproductive growth stage
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Figure 4 Illustration of the roles of root Zn uptake and Zn retranslocation
from vegetative organs (leaves and stems) into grain of wheat plants grown
under field (‘real-world’) conditions with limited water or Zn availability
or both during seed-filling (left) or under controlled growth conditions with
adequate water and Zn supply (right).

on several plant and soil factors, including micronutrient and water
availability during grain-filling, timing of senescence, length of
the grain-filling period and the nitrogen (N) nutritional status of
the plant. For the biofortification of cereals with Zn, it is critical
to maintain an adequate level of plant-available Zn in soil or a
large and readily available pool of Zn in vegetative organs during
seed-filling or both.

Since the discovery of Zn as an essential micronutrient for plants
(Sommer & Lipman, 1926), fertilization of crop plants with Zn
fertilizers either through soil or foliar application has become
an increasingly common practice in agricultural soil where Zn
deficiency limits crop productivity. The main aim of Zn fertilization
was typically to prevent or correct Zn deficiency and thus to improve
the yield; however, very little or no attention was paid, from a human
nutritional perspective, to the Zn concentrations of the edible parts
of food crops such as seeds and grains or starchy roots. Finally,
since the start of the International HarvestPlus (www.harvestplus
.org) programme and its sub-project HarvestZinc (www.harvestzinc
.org), there has been an increase in global interest to enhance Zn
concentrations in the edible parts of food crops.

In the framework of the HarvestZinc project (www.harvestzinc
.org), several field experiments have been carried out during the
past 7–8 years in 12 countries on wheat, rice and maize with
applications of several soil- and foliar-applied fertilizers. Clearly,
soil Zn applications at the time of sowing had little effect on the
concentration of Zn in the grain under field conditions, whereas
foliar Zn sprays were very effective in improving the grain Zn.
Figure 5 shows that among the cereals studied, wheat was by far
the most responsive to foliar Zn spray in terms of increases in grain
Zn (up to 83%). Rice showed an intermediate response to foliar
Zn applications and exhibited moderate increases in grain Zn (up
to 27%), whereas maize appeared to be less responsive (Figure 5).
Research is now going on to elucidate the physiological reasons
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Figure 5 Average changes in grain Zn concentration caused by soil, foliar
and soil+ foliar applications of Zn in the form of ZnSO4 to wheat, rice
and maize grown in Turkey at four locations. (For more detail about the
applications, please refer to Zhou et al., 2012 and Phattarakul et al., 2012.)
The percentages above the columns show the increases in grain Zn following
the soil+ foliar Zn relative to the control (no Zn application).

behind the different responses of these three major cereal crops to
foliar Zn applications.

It is well documented that foliar-applied Zn is phloem-mobile and
can be readily translocated into developing grains in wheat (Haslett
et al., 2001; Erenoglu et al., 2011). For foliar Zn applications to
wheat, the options are zinc sulphate (ZnSO4) and EDTA-chelated
Zn. Zinc sulphate is at least as effective as Zn-EDTA for correcting
Zn deficiency and increasing Zn concentrations in tissues, which
means that it is the most cost-effective option compared with
the relatively highly priced Zn-EDTA. The timing of foliar Zn
fertilizer application is an important determinant of its effectiveness
in terms of biofortification (Welch et al., 2013). In both wheat and
rice, foliar Zn applications are particularly effective in enriching
the grain with Zn if they are applied at a later rather than
an earlier developmental stage, preferably during grain-filling
(Cakmak et al., 2010a; Boonchuay et al., 2013; Abdoli et al., 2014).
The fertilizer strategy for the agronomic biofortification of wheat
with Zn enhances the Zn concentrations not only at the whole-grain
level but also specifically at the endosperm level, which is critical
for target populations that consume large quantities of white flour
(Cakmak et al., 2010a; Kutman et al., 2011a).

Although Zn fertilization is central to agronomic biofortification
of wheat with Zn, the implementation of an integrated mineral
nutrient management strategy offers even more benefits in terms of
increasing the Zn concentration of grain. Specifically, interactions
between nitrogen (N) and Zn applications have been studied
extensively in this context. It has been shown that the effects of
soil and foliar Zn fertilizers on grain Zn were enhanced by the
addition of adequate N fertilizer (Kutman et al., 2010). Whole-plant
partitioning and Zn radioisotope (65Zn) studies on wheat revealed
that suboptimal N supply limited the root uptake and root-to-shoot
translocation as well as the remobilization of Zn, which reduced
the accumulation of Zn in the grain (Erenoglu et al., 2011; Kutman
et al., 2011b). Clearly, optimized N management is also required to

realize the yield potential, which is critical from an economic point
of view and to maximize the grain protein concentration (Kutman
et al., 2010; Abedi et al., 2011), which is valuable in itself from
a nutritional point of view, given the large prevalence of protein
malnutrition in the world (de Onis et al., 1993). Speciation and
localization studies on cereal grains indicate that Zn interacts with
proteins in the grain, and therefore, grain proteins constitute a
physiological sink for Zn (Ozturk et al., 2006; Persson et al., 2009,
2016; Cakmak et al., 2010b).

Possible economic and environmental concerns
of the fertilizer strategy

A possible drawback of the fertilizer strategy for biofortification
is the extra cost of Zn fertilizer application, which might not
have a clear economic return unless crop productivity is limited
by Zn deficiency or there is a premium price for biofortified
grain. Depending on the severity of the Zn deficiency problem
in soil, Zn fertilization can contribute considerably to better crop
production in addition to the increases in grain Zn concentration.
Published reports show that the costs of Zn fertilizer application
are small compared with the economic returns through increases
in yield and the public health benefits (Harris et al., 2007; Shivay
et al., 2008; Manzeke et al., 2014; Joy et al., 2016). Based on the
meta-analysis of published data, Joy et al. (2015) reported that foliar
Zn application is a cost-effective strategy to improve grain Zn in
cereal crops, and the costs associated with foliar Zn treatments seem
to be similar to the cost of flour fortification with Zn.

It is estimated that 90% or more of the total cost of foliar
Zn fertilizer application is the cost of application itself, which
can be avoided by applying ZnSO4 together with pesticides that
are applied anyway (Ortiz-Monasterio et al., 2015; Wang et al.,
2015, 2016; Ram et al., 2016). There are no apparent compatibility
issues, and the pesticides tested do not reduce the effectiveness
of foliar Zn fertilizer. Farmers can be motivated to adopt the
fertilizer strategy for agronomic biofortification even in the absence
of an increase in yield because of the other agronomic benefits
provided by Zn fertilization. These include improved germination
and seedling vigour, and enhanced tolerance to abiotic stress and
disease resistance (Huber & Graham, 1999; Welch, 1999; Cakmak,
2008a).

Seeds with a larger Zn content perform distinctly better than
seeds with a smaller Zn content, especially in Zn-deficient soil
(Rengel & Graham, 1995; Yilmaz et al., 1998). Improved seedling
establishment might decrease the required seeding rates and thus
provide considerable economic benefits to farmers (Braun, 1999).
In addition, Zn suppresses important fungal diseases of wheat,
including Fusarium crown rot, Rhizoctonia cerealis ‘winter-kill’
and ‘take-all’ caused by Gaeumannomyces graminis (Brennan,
1992; Grewal et al., 1996; Braun, 1999).

Another potential health benefit of the fertilizer approach for bio-
fortification of wheat with Zn stems from the fact that Zn competes
strongly with cadmium (Cd), which is a very toxic, non-essential
heavy metal that threatens human health at every level from root
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uptake from soil to absorption in the digestive tract (Welch et al.,
1999; Reeves & Chaney, 2008; Cakmak, 2009). Cereals, espe-
cially durum wheat and rice, are reported to contribute the majority
of dietary Cd, and when wheat is grown in agricultural soil with
slightly elevated Cd concentrations, the grain Cd concentration can
exceed the maximum level set for wheat (0.2 mg kg−1) by Codex
Alimentarius (FAO/WHO, 2011; Harris & Taylor, 2013). Because
of the chemical similarity of Cd to Zn, plant Zn transporters such as
those in the zinc-regulated transporter (ZRT), iron-regulated trans-
porter (IRT)-like protein (ZIP) and heavy metal ATPase (HMA)
families also work as Cd transporters (Guerinot, 2000; Takahashi
et al., 2012; Uraguchi & Fujiwara, 2012; Cun et al., 2014). Genetic
interventions that alter the expression levels of the genes that encode
for these transporters often affect tissue Cd concentrations in addi-
tion to Zn concentrations. Recently, a study on a diverse collection
of barley genotypes demonstrated that large Zn accumulation in
grain was associated with large Cd accumulation (Detterbeck et al.,
2016). Therefore, genetic biofortification of wheat with Zn through
breeding or transgenic strategies might be risky in terms of grain
Cd concentrations, especially if it is not complemented with agro-
nomic biofortification through optimized Zn fertilizer application.
It has been well documented that Zn applications to wheat have a
marked inhibitory effect on the root uptake, root-to-shoot transloca-
tion, remobilization and seed deposition of Cd (Welch et al., 1999;
Cakmak et al., 2000; Jiao et al., 2004). In addition to increasing the
Zn concentration of wheat grain, proper Zn fertilization can also
contribute considerably to minimizing its Cd concentration and the
associated health risks.

Zinc is not only an essential mineral nutrient but it is also a
heavy metal. Therefore, one of the possible concerns about Zn
fertilizer application is its toxicity. Although crop plants and soil
organisms might be affected by Zn toxicity, it is quite rare in practice
and unlikely to be an important problem in most agricultural soil
(Broadley et al., 2007; Alloway, 2009). Zinc toxicity in crop plants
is usually limited to soil contaminated by mining and smelting
activities, polluted with industrial wastewater or treated excessively
with high-Zn sewage sludge. Although the threshold for Zn toxicity
in tissues varies widely among and within plant species, a typical
value for potentially toxic Zn concentration in leaves is 300 μg per g
dry weight (Marschner, 2012). Even for soil microorganisms, which
are more sensitive to heavy metal toxicity than crop plants because
of less advanced homeostatic mechanisms, Zn is reported to be far
less toxic than copper (Cu) or Cd (Saviozzi et al., 1997; Alloway,
2008).

To correct Zn deficiency and prevent yield losses in crop plants,
Zn is applied to deficient soil, typically in the form of ZnSO4,
at rates that range typically from 5 to 25 kg Zn ha−1 (Yilmaz
et al., 1997; Cakmak, 2008b; Abid et al., 2013; Zhao et al., 2014).
The rates of soil Zn application vary depending on the crop
species, soil characteristics and method of application; higher rates
are associated with crops sensitive to Zn deficiency, alkaline or
calcareous soil and broadcasting rather than banding (Alloway,
2008). Because a small percentage only of Zn applied to soil is taken
up in a single season by an annual crop, Zn fertilization has residual

effects for up to 10 years and is not needed every year (Brennan,
2001; Alloway, 2008; Cakmak, 2008b; Singh, 2008). A typical
foliar Zn fertilizer solution, on the other hand, contains 2–5 g
zinc sulphate heptahydrate (ZnSO4·7H2O) per litre. Therefore, the
amount of Zn applied as foliar spray is usually about 1 kg ha−1 only
or less (∼23% of 500–1000 l ha−1 2–5 g l−1 ZnSO4·7H2O), which
is at least five times less than that applied at the smallest rate of
application to the soil (5 kg Zn ha−1) and is considered completely
safe for the ecosystem (Cakmak et al., 2010a; Boonchuay et al.,
2013; Ram et al., 2016). Accidental over-applications of Zn and
contaminants such as Cd in low-quality Zn fertilizers only might
pose a toxicity risk to soil, crop plants and other organisms.

Conclusions

It is clear that the Zn fertilizer strategy is an effective way to bio-
fortify food crops with Zn, and it is also advantageous because it
might also contribute to (i) better yields depending on the extent
of soil Zn deficiency, (ii) improved seed and seedling vigour and
(iii) reduced root uptake and shoot (or grain) accumulation of Cd.
The Zn fertilizer strategy has important synergistic effects on classi-
cal and molecular plant breeding approaches. The genetic capacity
of the newly developed (biofortified) genotypes or lines through
conventional breeding or genetic engineering to absorb Zn from soil
or to translocate Zn from vegetative tissues into grain at desirable
amounts for human nutrition or both might not be expressed to the
full extent if the soil has inadequate concentrations of bioavailable
Zn. Applications of Zn to soil to ensure sufficient availability of Zn
for root uptake and foliar applications of Zn to enrich vegetative tis-
sues with Zn and thus enhance Zn remobilization into grains are key
agronomic interventions for achieving successful biofortification of
food crops with Zn.
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